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We present a novel and simple method to obtain an ultrawide free spectral range (FSR) silicon ring resonator
together with a tuning range covering the entire spectrum from 1500 to 1600 nm. A ring resonator with a large
FSR together with a high Q factor, high tuning efficiency, and low fabrication cost and complexity is desired for
many applications. In this paper, we introduce a novel way to make such a ring resonator, which takes advantage
of the well-known resonance-splitting phenomenon. It is a single ring resonator with an FSR of more than 150 nm
around 1550 nm and which has an easy thermo-optic tunability that can produce a tuning range around 90 nm
or even more. Moreover, the device is simple to implement and can be fabricated in standard complementary
metal-oxide semiconductor technology without requiring any kind of complicated processing or extra materials.
The potential applications include single mode laser cavities, wavelength division multiplexing filters, (de)multi-
plexers, optical sensors, and integrated reflectors. © 2016 Optical Society of America

OCIS codes: (230.5750) Resonators; (230.7408) Wavelength filtering devices; (230.3120) Integrated optics
devices; (280.4788) Optical sensing and sensors; (140.3570) Lasers, single-mode.
http://dx.doi.org/10.1364/PRJ.4.000084

1. INTRODUCTION
Microring resonators (MRRs) have proven to be one of the
most intensively used components in various applications,
covering laser cavities, wavelength division multiplexing fil-
ters, optical sensors, optical (de)multiplexers, all-optical sig-
nal processing, and more [1–6]. Silicon photonics is a very
attractive platform to implement MRRs because of its high in-
dex contrast and compatibility with complementary metal ox-
ide semiconductor (CMOS) technology [7,8]. This allows the
fabrication of compact rings with small round-trip length,
leading to a large free spectral range (FSR). Most applications
desire a ring resonator with a large FSR, wide tuning range,
low insertion loss, high quality Q factor, and narrow band-
width (BW) as well as low fabrication cost and complexity.
However, these performance indicators cannot all be opti-
mized at the same time; there is always a trade-off. For in-
stance, the most straightforward way to get a ring resonator
with a large FSR is to shorten its length, as the FSR is inversely
proportional to the round-trip length: FSR � λ20

ngL
, where λ0 is

the resonance wavelength and ng and L are the group index
and total length of the ring waveguide, respectively.

But it is not possible to reduce the round-trip length of the
ring indefinitely. First of all, this will complicate the tuning
scheme. Moreover, a very short length means a very sharp
bend radius, sometimes smaller than 5 mm in silicon strip
waveguides. This can lead to significant bend loss as well
as bend/straight transition loss [9,10] and make the ring more

vulnerable to sidewall roughness as the mode profile in the
bend waveguide is positioned closer to the outer wall. It is also
difficult to obtain the correct coupling coefficient in the cou-
pling sections because of the extremely short coupling length.
All these factors impose a lower limit on the ring round-trip
length and therefore an upper limit on the FSR.

Most applications limit the operational wavelength range of
the ring to a single FSR. In silicon nanophotonic waveguides,
the widest practical FSRs are of the order of 40 nm in the tele-
communication C-band around 1550 nm [11], and the tuning
efficiency is fixed at a value around 370 nm/RIU (refractive
index unit), according to Eq. (1) [8], where Δλ;Δneff are the
resonance wavelength shift and the effective index change,
respectively. This tuning efficiency generates a tuning range
limited to 7 nm if the thermo-optic effect is applied, as the tem-
perature variation induced by the heater is generally less than
100 K and the thermo-optic coefficient of silicon is 1.8 ×
10−4 K−1 [12]. A ring resonator that has a much wider FSR or
is even free of any FSR, can be tuned in a much wider range
by a simple thermo-optic effect, and at the same time does
not suffer from implementation or performance limitations
is therefore highly desirable:

Δλ
Δneff

� λ0
ng

: (1)

Some work from other researchers has been done to imple-
ment ring resonators with a very wide FSR [11,13–16]. Apart
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from drastically reducing the bend radius, these methods can
be classified in two categories: the use of the Vernier effect
in multiple rings [15,16] and the use of intraring reflectors,
which require complicated processing or CMOS-incompatible
materials [13,14,17].

Multiple rings will impose additional requirements on the
design accuracy and fabrication tolerance, as the resonance
wavelength and BW of the individual rings need to be ex-
tremely well matched. Otherwise the multiring configuration
can result in a split resonance. Beside, the tuning efficiency is
relatively poor and the resonance mode is hard to move con-
tinuously in the spectrum; moreover, the well-known problem
of backscattering induced splitting is not considered and can-
not be compensated [18].

An alternative is to introduce reflectors into the ring to
induce a strong coupling between the clockwise and the
counterclockwise propagating modes. Bragg gratings can be
used to implement this effect, but the need for high-resolution
e-beam lithography negates some of the advantages of current
silicon photonics technologies. The same can be said for the
use of metal particles as a backreflector, which would intro-
duce material incompatibilities. Moreover, Bragg gratings and
metal particles are accompanied with extra loss, namely radi-
ation loss and absorption loss. As clearly shown in [13], the Q
factor as well as the extinction ratio of the resonance is quite
poor. Again, these methods, even though they make use of de-
liberate backreflection, cannot compensate for unintentional,
stochastic backscattering along the circumference of the ring.

Our device presented in this paper is a simple structure
consisting of a ring resonator with a loop Mach–Zehnder inter-
ferometer (MZI) reflector inside the ring to intentionally intro-
duce reflection. The device is accompanied with an ultrawide
FSR that spans more than 150 nm. Beside, by implementing
two phase shifters, which can be based on a simple thermo-
optic effect, its tuning range can almost cover the whole
spectrum from 1500 to 1600 nm; this is equivalent to a tuning
efficiency 13 times higher than that of a normal silicon ring
resonator. Moreover, for most of the former literature, the ring
can only be configured as an all-pass ring; thus the applica-
tions are limited. The device proposed in this paper could be
configured as either an all-pass or an add–drop ring resonator.

The paper is constructed in the following way: in Section 2
wewill explain the schematic of the device as well as the theory
behind this phenomenon by means of temporal coupled mode
theory (tCMT). In Section 3, the design principles, detailed char-
acterization, and simulation results using the circuit simulator
Caphe [19] will be given. Finally we will conclude our work.

2. THEORY AND SCHEMATIC
In this section, we will first use tCMT to explain how reflec-
tion inside the MRR could significantly influence the extinc-
tion ratio of a resonance of an MRR. Here the extinction ratio
is defined as ER � −10 log�Pr�, where Pr is the power trans-
mission at one resonance. Then we will introduce how to get
an ultrawide FSR by taking advantage of this phenomenon.
Finally we will give and briefly introduce the schematic of
our device.

A. Extinction Ratio Modified by Reflection Inside the
MRR
tCMT has been used intensively to analyze a ring resonator
with or without reflection [18,20–22]. We will first use tCMT

to build a model for an ideal MRR and then build a model for
an MRR with reflection inside, to clearly and quantitatively
show how the reflection will influence the performance (res-
onance wavelength, extinction ratio, etc.) of the ring.

1. tCMT for Ideal MRR
For an ideal MRR without any kind of reflection or backscat-
tering inside, there is only one circulating mode when only
one port is injected with light as shown in Fig. 1(a). According
to tCMT, equations describing the circulating mode αccw as
well as the transmitted wave amplitude at throughport St

are given in Eqs. (2) and (3) [20,21]:

dαccw
dt

� jω0αccw −

�
1
τi
� 1

τo
� 1

τl

�
αccw − jμiSi; (2)

St � Si − jμiαccw Sd � −jμoαccw Sa � Sr � 0: (3)

Here, αccw stands for the energy amplitude of the counter-
clockwise propagating mode, normalized such that jαccwj2 rep-
resents the total stored energy of this mode in the ring. Sx

refers to the wave amplitude at each port, quite similar to
the electric filed amplitude, as jSxj2 also has the unit of power.
The decay rates 1

τi
and 1

τo
describe the transfer of energy to the

input and output bus waveguides, and 1
τl
represents the intrin-

sic (“unloaded”) round-trip loss. The couplings in the direc-
tional couplers μi and μo are related to these decay rates
and the field coupling coefficients κi and κo as in Eq. (4) [21]:

μ2i � κ2i
c

ngL
� 2

τi
μ2o � κ2o

c
ngL

� 2
τo

a2l
c

ngL
� 2

τl
: (4)

Here, c; ng; L are light speed in a vacuum, the group index of
the waveguide, and the physical length of the ring, respec-
tively. The term al denotes the round-trip loss of the electric
field in the MRR and is similar in concept with the field cou-
pling coefficients κi and κo. After solving Eqs. (2) and (3), we
can extract a straightforward formula for the amplitude as
well as the power at each port as in Eqs. (5) and (6):

St

Si
� 1 −

2
τi

j�ω − ω0� �
�
1
τi
� 1

τo
� 1

τl

� ; (5)

jStj2
jSij2

� 1 −
2
τi

�
2
τo
� 2

τl

�
�ω − ω0�2 �

�
1
τi
� 1

τo
� 1

τl

�
2 : (6)

Fig. 1. Schematic of the tCMT model for ring resonators. (a) In an
ideal ring resonator with no reflection inside, only one circulating
mode is activated. (b) In a ring resonator with internal backreflection,
the two modes are coupled and thus simultaneously active.
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Clearly, the resonance is a Lorentzian-shape line. Its central
frequency ω0 or wavelength λ0 is entirely determined by the
physical length L and effective index neff of the MRR. The ex-
tinction ratio is directly related with the transmission at the
resonance frequency ω � ω0, which is shown in Eq. (7):

Pi � 1 −
2
τi

�
2
τo
� 2

τl

�
�
1
τi
� 1

τo
� 1

τl

�
2 : (7)

When 1
τi
� 1

τo
� 1

τl
, then Pi � 0, or physically speaking, when

the power coupled into the MRR from the input port i equals
the round-trip loss plus the power coupled to the output
port d, we get critical coupling, which gives us the largest ex-
tinction ratio. For an all-pass ring, where 1

τo
� 0, the critical

coupling condition is changed to κ2i � a2l . It is in good corre-
spondence with former literature which describes critical cou-
pling in the space domain [8]. In [8], the critical coupling
condition for an all-pass MRR gives the same result, while for
an add–drop MRR it is written as �1 − κ2i � � �1 − κ2o��1 − a2l �.
After some transformation we get κ2i � κ2o � a2l − κ2oa2l , where
the term κ2oa2l is generally two orders of magnitudes smaller,
and therefore negligible. At that point it becomes the same as
our condition, which is κ2i � κ2o � a2l .

2. tCMT Model for an MRR with Reflection Inside
After having an understanding of the tCMT and the concept of
critical coupling, we will derive the equations for MRR with
internal reflection. The essential difference with an ideal
MRR is that, due to reflection inside, the two degenerate cir-
culating modes αcw (clockwise), and αccw (counterclockwise)
are coupled and activated simultaneously, as illustrated in
Fig. 1(b). This leads to resonance splitting and a change in
the extinction ratio. The equations for amplitudes of these
modes are modified to Eqs. (8) and (9):

dαccw
dt

� jω0αccw −

�
1
τi
� 1

τo
� 1

τl

�
αccw − jμiSi − jμrαcw; (8)

dαcw
dt

� jω0αcw −

�
1
τi
� 1

τo
� 1

τl

�
αcw − jμ�rαccw: (9)

There is an extra term of μr appearing in these equations.
Here we consider a simple coupling of these two modes,
which means the coupling is conservative instead of dissipa-
tive. Similar to μo and μi, μr refers to the mutual coupling
between these two modes. But it is slightly different in its
dependency on the field reflectivity r as given in Eq. (10):

μ2r � r2
�

c
ngL

�
2
: (10)

The equation to get St and Sd remains the same as Eq. (3)
(note that even though the equations are the same, αcw; αccw
are modified), but Sa and Sr are modified to Eq. (11). And this
time, we get quite a different formula for St as in Eq. (12):

Sa � −jμoαcw Sr � −jμiαcw; (11)

St

Si
� 1 −

2
τi

j�ω − ω0� �
�
1
τi
� 1

τo
� 1

τl

�
h
j�ω − ω0� �

�
1
τi
� 1

τo
� 1

τl

�i
2 � jμr j2

� 1 −
2
τi

0
@ 0.5

j�ω − ω1� �
�
1
τi
� 1

τo
� 1

τl

�

� 0.5

j�ω − ω2� �
�
1
τi
� 1

τo
� 1

τl

�
1
A: (12)

Clearly, instead of one single Lorentzian-shape resonance
as in Eq. (5), there are now two Lorentzian-shape resonances
with their own resonance frequencies ω1 � ω0 � jμr j;ω2 �
ω0 − jμr j. The modified power transmission Pr at the reso-
nance frequencies ω1 or ω2 are given in Eq. (13). Note that
in Eq. (13), 1

τi
; 1
τo
; 1τl , and μr are already replaced by Eqs. (4)

and (10):

Pr �
 

2
τo
� 2

τl
2
τi
� 2

τo
� 2

τl

!
2

�

�
2
τi

�
2
− 2 2

τi

�
2
τo
� 2

τl

�
�
2
τi
� 2

τo
� 2

τl

�
2 � 16jμr j2

�
�

κ2o � a2l
κ2i � κ2o � a2l

�2

� �κ2i �2 − 2κ2i �κ2o � a2l �
�κ2i � κ2o � a2l �2 � 16r2

: (13)

If r � 0, Eq. (13) becomes identical to Eq. (7). Because of
the existence of reflection μr , the transmission at resonance
becomes impossible to directly analyze in a quantitative way.
By assuming the MRR is still at the original critical coupling
point as an ideal MRR, we will see how the extinction ratio
changes dramatically with the reflection. By making
κ2i � κ2o � a2l , Pr is modified to Eq. (14):

Pr jcp � 1
4
−

jκj4
4jκj4 � 16r2

: (14)

In Fig. 2, we get the extinction ratio of a critically coupled
MRR as a function of field reflectivity jrj under different field
coupling coefficients jκij. Clearly, the extinction ratio drops
dramatically with increasing reflectivity. This phenomenon
is one of the basic principles in our paper to get an ultrawide
FSR in an MRR. We will introduce a reflector whose reflection
spectrum is strongly wavelength dependent. In a specific con-
figuration, we can obtain a spectrum where only a single res-
onance suffers zero reflection while the others within a
wavelength range of 150 nm suffer from strong reflection.

Fig. 2. At the critical coupling point, the extinction ratio drops dra-
matically with increasing reflection until it reaches an almost constant
value.
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Before this, we investigate how the extinction ratio changes
with reflectivity when the MRR is not critically coupled. This
is important because in reality, it is very difficult to fabricate a
ring where all coupling factors and losses are matched at the
correct wavelength, due to fabrication variability. So explor-
ing the behavior of the ring in the non-critical-coupling regime
can also be considered as a fabrication tolerance analysis of
the device. In Fig. 3 the dependency of extinction ratio on re-
flectivity jrj under different coupling strengths is given. In con-
trast to Fig. 2, the MRR is not configured at the critical coupling
point. The loss factor α2l is set to be constant at 0.0114, corre-
sponding with a 0.05 dB round-trip power loss, and κi is set to
be identical with κo, which is often the case and much easier to
ensure than an absolute coupling coefficient.

It is natural to expect a performance degradation due to the
deviation from the critical coupling condition, which appears
in the smoother slope and the smaller side mode suppression
ratio (SMSR); here SMSR is defined as SMSR � ER0 − ERr ,
where ER0;ERr refer to the extinction ratio of the resonance
that suffers zero reflection and the resonance that suffers
strong reflection, respectively. However, the extinction ratio
still drops significantly with increasing reflectivity, and it is
noteworthy that the extinction ratio of the remaining reso-
nance (ER0) as well as the SMSR can be improved simply by
increasing the coupling coefficient, as illustrated in Fig. 4.
This device is then quite practical, as we require no exact con-
figuration such as critical coupling. Another advantage is that
in this configuration the MRR becomes less sensitive to sto-
chastic backscattering, which we will discuss in detail in a
later section.

B. Ultrawide FSR MRR
Now we get to know that the reflection will significantly re-
duce the extinction ratio of the resonance. If we could find a
way to make all but one resonance of the ideal MRR suffer
from strong reflection while the rest suffer zero reflection,
then only one resonance has a large extinction ratio while
all the rest have a very small extinction ratio, and we could
consider this MRR as FSR free. This requirement could be
achieved by introducing a tunable reflector consisting of a
loop MZI, as shown in Fig. 5. This circuit can generate various
reflection spectra based on the lengths L1; L2 of its two arms.
Section 3 discusses the design and simulation in detail.

C. Schematic
The schematic of the MRR with an ultrawide FSR is given in
Fig. 5. It consists of an MRR with an embedded asymmetric

MZI reflector, which intentionally introduces a wavelength-
dependent reflection that couples the two circulating modes
(CW and CCW).

3. DESIGN, SIMULATION, AND ANALYSIS
A. Design
The key design parameter of the loop-MZI reflector is the
length differenceΔL � L1 − L2 between the two arms. The ab-
solute length of each arm depends on the specific application.
For instance, for sensing we prefer a longer arm to capture
more particles; however, for filters or laser cavities, we would
rather make them as short as possible to reduce the loss, foot-
print, and stochastic backscattering. The zero-reflection
wavelength depends on the ΔL as in Eq. (15):

2πΔLneff

λ
� mπ: (15)

Here, m is the interference order, similar to the parameter
of a normal MZI. The simulated reflection spectra with various

Fig. 3. Extinction ratio still changes significantly with increasing re-
flectivity when the MRR is configured as κi � κo, which is the general
case and easy to guarantee.

Fig. 4. These figures show how the extinction ratio as well as the
side mode suppression changes with power coupling coefficient when
the MRR is designed as κi � κo. (a) Extinction ratio as a function of
coupling coefficient. (b) Side mode expression as a function of cou-
pling coefficient.

Fig. 5. The ring resonator has a loop MZI tunable reflector inside,
which introduces a wavelength-dependent intentional reflection that
couples two circulating modes.
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ΔL generated by the circuit simulator Caphe [19] is given
in Fig. 6.

In the simplified case where the directional coupler is
treated as an ideal, wavelength-independent component, a
larger ΔL will lead to a smaller FSR and a sharper slope.
More interesting is the case where a realistic behavior of the
directional coupler is applied, which is a linear wavelength
dependency extracted from a finite-difference time-domain
simulation. In that case the FSR seems to be independent of
ΔL, while the slope still shows the same dependency on ΔL.
This facilitates our design as we can now get a large FSR to-
gether with a sharp reflection slope.

B. Simulation
In Fig. 7, the simulated throughport spectrum of our device is
plotted. Here, L2 � 10 mm, m � 23; thus ΔL � 7.44 mm, the
total round-trip length is set to be around 150 mm, and a res-
onance appears at 1540 nm. The round-trip loss is set to be
0.05 dB (corresponding with a loss coefficient of 330 dB/m),
and κi � κo. Corresponding with the theory, only the reso-
nance of zero reflection shows a large extinction ratio in the
ring spectrum, while the other resonances have a very small
extinction ratio and a clear resonance splitting. Besides, we
notice that another part of the theory is also verified, which
is that the SMSR and extinction ratio of the surviving reso-
nance could be increased simply by coupling more power into
the ring, as also shown in Fig. 7. Even though for large cou-
pling coefficient, for instance, κ2i � 0.5, the adjacent reso-
nance modes start to arise, we can again suppress them by
increasing the interference number m as this will sharpen
the slope of the reflector spectrum. This feature will be also
mentioned and illustrated in Fig. 13 in Section 3.D. However,

we need to bear in mind that by increasing the power coupling
coefficient, the BW and the Q factor of the resonance will be
broadened and decreased, respectively, which is not so desir-
able in many applications.

C. Tunability
We also look into the tunability of the device. As our device
consists of two components that can be individually tuned,
namely, a ring resonator and an MZI based reflector, we
can easily implement two very different tuning mechanisms
or configurations by either tuning the whole device as dis-
cussed in Section 3.C.1 or separately tuning the ring and
the reflector, as in Section 3.C.2.

1. Common Tuning
When the effective index of the waveguide changes on a
global scale (e.g., by ambient temperature variations or back-
ground index change), both the zero-reflection wavelength
as well as the resonance wavelength of the ring will drift at
the same rate, as in Eq. (16). In Fig. 8, the spectra of both

Fig. 6. Curves of the reflection spectra of the reflector. The direc-
tional couplers are designed to be a 50/50 splitter. (a) The directional
coupler performance is wavelength independent. (b) A linear model
for directional coupler extracted from FDTD simulation is added.

Fig. 7. Simulated throughport of our device. The order m is chosen
to be 23, and the MRR is set at the normal coupling condition κ2i � κ2o.
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the tunable reflector and MRR at different global effective in-
dices are given:

Δλ
λ0

� Δneff

ng
: (16)

This configuration gives the same tuning efficiency and
thus the same tuning range as a regular silicon ring resonator,
which is not particularly efficient. However, if we direct our
attention from tuning to sensing applications, this configura-
tion could be quite promising, as no matter how large the
background index changes are, the single mode condition
remains within the ultrawide FSR and the resonance shifts
corresponds with the background index change. In other
words, this configuration could be very suitable for sensing
applications, especially in a large and rapid index change
environment.

2. Separate Tuning
Alternatively, we can tune the ring and the reflector sepa-
rately. In Fig. 9 we add two phase shifters for one arm of
the reflector and the ring waveguide, respectively. Logically
speaking, the phase shifter 1 (PS1) performs the function of
resonance selection. It selects one out of all the resonances of
the ring to be the single mode of the device. The phase shifter
2 (PS2) takes the responsibility of comb tuning. It shifts the
resonance spectrum of the ring resonator so that the single
resonance selected by PS1 can be adjusted locally to cover
a continuum rather than some discrete points. Mathematically
speaking, the shift of the zero-reflection wavelength of the re-
flector is given in Eq. (17) and the shift of the resonance mode
of the ring resonator is given in Eq. (18):

Fig. 8. In common tuning configuration, the zero-reflection wave-
length of the reflector and the resonance wavelength of the MRR shift
at the same rate, and thus the MRR remains single mode. (a) The shift
of the zero-reflection wavelength of the MZI based reflector induced
by effective index neff change. (b) The shift of the resonance wave-
length of the MRR induced by effective index neff change.

Fig. 9. Instead of using one common phase shifter, we can imple-
ment two separate phase shifters to achieve individual tuning of
the zero-reflection wavelength of the reflector and the resonance
wavelength of the ring.

Fig. 10. Two phase shifters are implemented, with PS1 responsible
for the mode selection and PS2 in charge of comb tuning. With the
same index change, we achieve a 4 times larger wavelength shift com-
pared to common tuning. (a) Without PS2, the single mode resonance
can only take place at some discrete wavelength points, as the zero-
reflection wavelength of the reflector might not match the resonance
of the ring. (b) With PS2 working, the single mode resonance can be
tuned continuously, as the resonance of the ring resonator can now be
aligned to the zero-reflection wavelength of the reflector.

Fig. 11. When optimizing for a larger tuning range (at the cost of
smaller SMSR) we achieve a tuning range almost as wide as 100 nm
with the same index change.
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Δλref
λ0

� Δnps1

ng

Lps1

ΔL
; (17)

Δλring
λ0

� Δnps1Lps1 � Δnps2Lps2

ng�Lps1 � Lps2� � neffLrest
: (18)

• λ0 is the wavelength of the single resonance. At its origi-
nal state, this is the zero-reflection wavelength of the reflector,
and it matches one of the resonance wavelengths of the ring
resonator.

• Δnps1 and Δnps2 are the effective index change in PS1
and PS2, respectively. Similarly, Lps1; Lps2 refer to the length
of these two phase shifters.

• Lrest stands for the rest length of the ring resonator.
Lrest � Lps1 � Lps2 equals the total length of ring L.

• Δλref and Δλring are the shift of the zero-reflection wave-
length of the reflector and the resonance wavelength of the
ring resonator, respectively.

In contrast to the common tuning configuration, where the
zero-reflection wavelength of the reflector and the resonance
wavelength of the ring resonator shift at the same rate as in
Eq. (16), they now shift at a very different rate. The former one
shifts much more efficiently, depending on the value of Lps1

and ΔL. This provides the possibility to achieve a much wider
tuning range. Specifically, when Δλref � Δλring � n FSR, the
new zero-reflection wavelength will again match one of the
resonances of the ring resonator; thus the single mode condi-
tion remains. In the first design (where L2 � Lps2 � 10 mm,
m � 23, L � 150 mm), we achieve a 4× higher tuning effi-
ciency as illustrated in Fig. 10. In other words, with the same
amount of effective index change (around 0.02), a tuning
range of 30 nm is achieved instead of 7 nm. With further opti-
mization (L2 � Lps2 � 50 mm, m � 27, L � 260 mm, and the
same loss coefficient of 330 dB/m), the tuning range can ex-
pand to almost 100 nm, covering the spectrum from 1500 to
1600 nm, as illustrated in Fig. 11.

Fig. 12. Tuning maps for the two phase shifters PS1 and PS2 to achieve a continuous shift of the single mode resonance. (a), (c), and (e) give the
results of the first design, where the SMSR of each wavelength is larger than 28 dB while the tuning range is only 30 nm, 4 times wider than that of a
normal silicon ring resonator. The results of the modified design are illustrated in (b), (d), and (f) where the design parameters are changed to
achieve a much wider tuning range around 90 nm at the price of a smaller SMSR, but still, at each wavelength, a SMSR larger than 14 dB can be
guaranteed. (a) Wavelength of single mode ring 1. (b) Wavelength of single mode ring 2. (c) Extinction ratio of single mode ring 1. (d) Extinction
ratio of single mode ring 2. (e) Side mode suppression of single mode ring 1. (f) Side mode suppression of single mode ring 2.
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In Fig. 12, we give a more straightforward way to illustrate
how to tune the PS1 and PS2 in order to achieve a continuous
tuning of the single mode wavelength. Clearly, by tuning the
index change of PS1 and PS2 in a feasible range (0–0.02), we
can address a continuous shift of the single mode wavelength
in a 30 nm span or a 90 nm span, depending on the design
parameters of the MZI reflector. And at each wavelength, an
extinction ratio larger than 30 dB and a side mode suppression
larger than 26 dB (14 dB for 90 nm tuning span) can be guar-
anteed. In other words, a wide tuning range comes at the price
of a smaller side mode suppression. However, the extinction
ratio would be roughly independent of the length of PS1. Thus,
the choice between a larger tuning range and a larger side
mode suppression would depend on its specific application.
These figures actually reveal another important feature of
our device, which is the tolerance to the design accuracy. In
other words, it does not require a ridiculously precise design
of the individual optical length, as the single mode condition
can be always achieved by dynamic tuning PS1 and PS2.

D. Effect of Unintentional Backscattering
Now we need to focus on some more practical issues, for
instance, the well-known backscattering in a silicon-on-
insulator MRR. Backscattering can introduce 6–8 m−1 power
reflectivity Rbs in a single mode silicon strip waveguide with
dimensions around 450 nm × 220 nm [23]. As mentioned
above, the total length of our MRR is very flexible and can
be as short as 150 mm. The only drawback of the long length
is its higher power reflection caused by the backscattering as
it linearly scales with length.

In Fig. 13, we show the influence of backscattering for an
MRR configured at the normal coupling condition (κi � κo).
As expected, the backscattering induced reflection will de-
grade the performance. When the length grows from 150 to
300 mm, and the power reflectivity caused by backscattering
increases from 0.00105 to 0.0021, the single mode condition is
damaged when the ring is configured at κ2i � 0.2 and m � 23.
But still, one could increase the performance by simply cou-
pling more light and increasing the resonant number m, as
illustrated in Figs. 13(b) and 13(c).

4. CONCLUSION
In conclusion, in this paper, we proposed a novel and simple
method to obtain an all-silicon ring resonator which has only a
single resonance in a wavelength range of over 150 nm and a
13 times higher tuning efficiency compared to normal silicon
ring resonator, that is to say, a tuning range almost as wide
as 100 nm. One significant advantage is its simple structure,
which is compatible with most of today’s CMOS-based silicon
photonics technology platforms. We provide a comprehensive
and systematic theoretical model based on tCMT. Simulations
with respect to the main design parameters are discussed,
as well as the tolerance to the well-known and unavoidable
backscattering.
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